
The cLEMENCy Architecture

Lightning
Legitimate Business Syndicate

July 2017

The cLEMENCy Architecture

Legitimate Business Syndicate
Deadwood Fuzyll Gyno HJ Hoju Jetboy Jymbolia Lightning Selir

Sirgoon Thing2 Vito

To the extent possible under law, Legitimate Business Syndicate have waived
all copyright and related or neighboring rights to “The cLEMENCy Architec-
ture”. This work is published in the United States. For more information about
this license, please visit https://creativecommons.org/publicdomain/zero/1.0/

Compiled from revision 800e888b75c209289bd4676299fb4da250ae7008 on
July 26, 2017 .

ii

Contents

1 Basic Architecture 1
1.1 Registers . 1
1.2 Stack . 2
1.3 Relative Memory Reference . 3

2 Memory layout and IO 5
2.1 Memory Protection . 5
2.2 Clock IO . 6
2.3 Flag IO . 6
2.4 Data Received . 6
2.5 Data Received Size . 7
2.6 Data Sent . 7
2.7 Data Sent Size . 7
2.8 Shared Memory . 7
2.9 NVRAM Memory . 7
2.10 Interrupt Pointers . 7
2.11 Processor Identification . 8

3 Interrupts and Exceptions 11
3.1 Timer 1 to 4 Interrupts . 11
3.2 Invalid Instruction Exception 11
3.3 Divide by 0 Exception . 11
3.4 Memory Exception . 11
3.5 Data Received Interrupt . 12
3.6 Data Sent Interrupt . 12
3.7 Exceptions . 12

4 Instruction Set 13
4.1 AD: Add . 14
4.2 ADC: Add With Carry . 14
4.3 ADCI: Add Immediate With Carry 15
4.4 ADCIM: Add Immediate Multi Reg With Carry 15
4.5 ADCM: Add Multi Reg With Carry 16
4.6 ADF: Add Floating Point . 16
4.7 ADFM: Add Floating Point Multi Reg 16

iii

iv CONTENTS

4.8 ADI: Add Immediate . 17
4.9 ADIM: Add Immediate Multi Reg 17
4.10 ADM: Add Multi Reg . 17
4.11 AN: And . 18
4.12 ANI: And Immediate . 18
4.13 ANM: And Multi Reg . 18
4.14 B: Branch Conditional . 19
4.15 BF: Bit Flip . 20
4.16 BFM: Bit Flip Multi Reg . 20
4.17 BR: Branch Register Conditional 21
4.18 BRA: Branch Absolute . 22
4.19 BRR: Branch Relative . 22
4.20 C: Call Conditional . 23
4.21 CAA: Call Absolute . 24
4.22 CAR: Call Relative . 24
4.23 CM: Compare . 25
4.24 CMF: Compare Floating Point 26
4.25 CMFM: Compare Floating Point Multi Reg 26
4.26 CMI: Compare Immediate . 27
4.27 CMIM: Compare Immediate Multi Reg 28
4.28 CMM: Compare Multi Reg . 29
4.29 CR: Call Register Conditional 30
4.30 DBRK: Debug Break . 31
4.31 DI: Disable Interrupts . 31
4.32 DMT: Direct Memory Transfer 32
4.33 DV: Divide . 32
4.34 DVF: Divide Floating Point . 33
4.35 DVFM: Divide Floating Point Multi Reg 33
4.36 DVI: Divide Immediate . 33
4.37 DVIM: Divide Immediate Multi Reg 34
4.38 DVIS: Divide Immediate Signed 34
4.39 DVISM: Divide Immediate Signed Multi Reg 34
4.40 DVM: Divide Multi Reg . 35
4.41 DVS: Divide Signed . 35
4.42 DVSM: Divide Signed Multi Reg 35
4.43 EI: Enable Interrupts . 36
4.44 FTI: Float to Integer . 36
4.45 FTIM: Float to Integer Multi Reg 36
4.46 HT: Halt . 37
4.47 IR: Interrupt Return . 37
4.48 ITF: Integer to Float . 38
4.49 ITFM: Integer to Float Multi Reg 38
4.50 LDS: Load Single . 39
4.51 LDT: Load Tri . 40
4.52 LDW: Load Word . 41
4.53 MD: Modulus . 42

CONTENTS v

4.54 MDF: Modulus Floating Point 42
4.55 MDFM: Modulus Floating Point Multi Reg 42
4.56 MDI: Modulus Immediate . 43
4.57 MDIM: Modulus Immediate Multi Reg 43
4.58 MDIS: Modulus Immediate Signed 44
4.59 MDISM: Modulus Immediate Signed Multi Reg 44
4.60 MDM: Modulus Multi Reg . 45
4.61 MDS: Modulus Signed . 45
4.62 MDSM: Modulus Signed Multi Reg 45
4.63 MH: Move High . 46
4.64 ML: Move Low . 46
4.65 MS: Move Low Signed . 46
4.66 MU: Multiply . 47
4.67 MUF: Multiply Floating Point 47
4.68 MUFM: Multiply Floating Point Multi Reg 47
4.69 MUI: Multiply Immediate . 48
4.70 MUIM: Multiply Immediate Multi Reg 48
4.71 MUIS: Multiply Immediate Signed 48
4.72 MUISM: Multiply Immediate Signed Multi Reg 49
4.73 MUM: Multiply Multi Reg . 49
4.74 MUS: Multiply Signed . 49
4.75 MUSM: Multiply Signed Multi Reg 50
4.76 NG: Negate . 50
4.77 NGF: Negate Floating Point 50
4.78 NGFM: Negate Floating Point Multi Reg 51
4.79 NGM: Negate Multi Reg . 51
4.80 NT: Not . 51
4.81 NTM: Not Multi Reg . 52
4.82 OR: Or . 52
4.83 ORI: Or Immediate . 52
4.84 ORM: Or Multi Reg . 53
4.85 RE: Return . 53
4.86 RF: Read Flags . 53
4.87 RL: Rotate Left . 54
4.88 RLI: Rotate Left Immediate 54
4.89 RLIM: Rotate Left Immediate Multi Reg 54
4.90 RLM: Rotate Left Multi Reg 55
4.91 RMP: Read Memory Protection 56
4.92 RND: Random . 57
4.93 RNDM: Random Multi Reg . 57
4.94 RR: Rotate Right . 57
4.95 RRI: Rotate Right Immediate 58
4.96 RRIM: Rotate Right Immediate Multi Reg 58
4.97 RRM: Rotate Right Multi Reg 58
4.98 SA: Shift Arithemetic Right . 59
4.99 SAI: Shift Arithemetic Right Immediate 59

vi CONTENTS

4.100 SAIM: Shift Arithemetic Right Immediate Multi Reg 59
4.101 SAM: Shift Arithemetic Right Multi Reg 60
4.102 SB: Subtract . 60
4.103 SBC: Subtract With Carry . 61
4.104 SBCI: Subtract Immediate With Carry 61
4.105 SBCIM: Subtract Immediate Multi Reg With Carry 62
4.106 SBCM: Subtract Multi Reg With Carry 62
4.107 SBF: Subtract Floating Point 63
4.108 SBFM: Subtract Floating Point Multi Reg 63
4.109 SBI: Subtract Immediate . 63
4.110 SBIM: Subtract Immediate Multi Reg 64
4.111 SBM: Subtract Multi Reg . 64
4.112 SES: Sign Extend Single . 64
4.113 SEW: Sign Extend Word . 65
4.114 SF: Set Flags . 65
4.115 SL: Shift Left . 65
4.116 SLI: Shift Left Immediate . 66
4.117 SLIM: Shift Left Immediate Multi Reg 66
4.118 SLM: Shift Left Multi Reg . 66
4.119 SMP: Set Memory Protection 67
4.120 SR: Shift Right . 68
4.121 SRI: Shift Right Immediate . 68
4.122 SRIM: Shift Right Immediate Multi Reg 69
4.123 SRM: Shift Right Multi Reg 69
4.124 STS: Store Single . 70
4.125 STT: Store Tri . 71
4.126 STW: Store Word . 72
4.127 WT: Wait . 73
4.128 XR: Xor . 73
4.129 XRI: Xor Immediate . 73
4.130 XRM: Xor Multi Reg . 74
4.131 ZES: Zero Extend Single . 74
4.132 ZEW: Zero Extend Word . 74

List of Tables

1.1 Registers . 2
1.2 Flags Register Layout . 2

2.1 Memory Mapping . 5
2.2 Memory Protection States . 6
2.3 Clock and Timer Parameters . 6
2.4 Interrupt Pointer Addresses . 8
2.5 Processor Identification Attributes 8
2.6 Processor Functionality Flags . 8

3.1 Exception Identifiers . 12

vii

viii LIST OF TABLES

Chapter 1

Basic Architecture

cLEMENCy is the LEgitbs Middle ENdian Computer architecture developed
by Lightning for DEF CON CTF.

Each byte is 9 bits of data, bit 0 is the left most significant bit. Middle-
Endian data stores bits 9 to 17, followed by bits 0 to 8, then bits 18 to 27 in
memory when handling three bytes. Two bytes of data will have bits 9-17 then
bits 0 to 8 written to memory.

Register XXYYZZ → Memory YYXXZZ

Register XXYY → Memory YYXX

1.1 Registers

cLEMECy has 32 general purpose 27-bit wide registers that serve both floating
point and integer math operations along with a separate flag register. The multi-
register format allows for a 54-bit value to be used during math operations by
using two registers side by side while the starting register can be any register.
If an instruction goes past the PC register while accessing multiple registers
then access continues to R0. Attempts to write to PC by a load instruction are
ignored.

The multi-register format and floating point operations are optional compo-
nents of the processor, checking the processor features is recommended before
attempts are made in using such instructions.

The ST, RA, and PC registers have a special purpose while all other regis-
ters are general use. The following table is a recommended register setup for
compilers:

1

2 CHAPTER 1. BASIC ARCHITECTURE

Table 1.1: Registers
Register Name Register Number Notes

R0 0 General purpose, parameter 1 and func-
tion return value

R1 to R8 1 to 8 General purpose, parameters 2 to 8
R9 to R28 9 to 28 General purpose, saved between func-

tion calls
ST 29 Pointer into the current memory loca-

tion holding the current end of the stack
RA 30 Return address register, filled in by the

call instruction, used when a return is
executed

PC 31 Program counter, register is read-only
FL Current flag and interrupt state

The flags register has the following layout:

Table 1.2: Flags Register Layout
0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X S O C Z

Data Sent Interrupt Enabled
Data Received Interrupt Enabled

Memory Exception Enabled
Divide by 0 Exception Enabled

Invalid Instruction Exception Enabled
Timer4 Interrupt Enabled

Timer3 Interrupt Enabled
Timer2 Interrupt Enabled

Timer1 Interrupt Enabled
Signed bit
Overflow bit

Carry bit
Zero bit

1.2 Stack
Due to no specific stack based instructions, there is no expected direction the
stack should grow, however during an interrupt the processor will subtract 99
bytes of data from the stack pointer when storing all registers to the stack and
the interrupt return will read 99 bytes from the current stack pointer. If an
implementation needs the interrupts to add to the stack instead of subtracting

1.3. RELATIVE MEMORY REFERENCE 3

then changing the ’Interrupt stack direction flag’ bit in the features area of the
processor will accomplish this.

1.3 Relative Memory Reference
All relative references are from the beginning of the instruction handling the
relative reference. A relative branch will adjust PC by the amount in the relative
offset without including the branch instruction size. Only if the branch is not
taken is PC adjusted by the instruction size.

4 CHAPTER 1. BASIC ARCHITECTURE

Chapter 2

Memory layout and IO

There are 2 main areas of memory, the RAM area and the DMA mapped areas.
Processor execution starts at memory offset 0 and all DMA memory has the
high bit of the memory address set. The following table provides the memory
mapping for cLEMENCy processors:

Table 2.1: Memory Mapping
Memory Start Memory End Information

0000000 3FFFFFF Main Program Memory
4000000 400001D Clock IO
4010000 4010FFF Flag IO
5000000 5001FFF Data Received
5002000 5002002 Data Received Size
5010000 5011FFF Data Sent
5012000 5012002 Data Sent Size
6000000 67FFFFF Shared Memory
6800000 6FFFFFF NVRAM Memory
7FFFF00 7FFFF1B Interrupt Pointers
7FFFF80 7FFFFFF Processor Identification and Features

2.1 Memory Protection

Memory is broken up into 1024 byte pages. Each page can have 1 of 4 states
applied to it.

5

6 CHAPTER 2. MEMORY LAYOUT AND IO

Table 2.2: Memory Protection States
State Meaning

0 No Access
1 Read Only
2 Read/Write
3 Read/Execute

Attempting to interact with memory that is inconsistent with its current
state will result in a memory exception occurring. If the exception is turned
off and the attempt is execution then the processor will halt. The memory
protection flags are from the processor only allowing for external IO controllers
to modify any memory they are associated with even if the memory protection
flags are set on their regions to Read Only or No Access.

2.2 Clock IO
There are 6 bytes per timer with 4 timers maximum. A 0 for the timer delay
disables that specific timer. Each timer has a 1 millisecond accuracy.

Table 2.3: Clock and Timer Parameters
Memory Start Bytes Details

4000000 3 Timer 1 Delay
4000003 3 Number of milliseconds left for Timer 1
4000006 3 Timer 2 Delay
4000009 3 Number of milliseconds left for Timer 2
400000C 3 Timer 3 Delay
400000F 3 Number of milliseconds left for Timer 3
4000012 3 Timer 4 Delay
4000015 3 Number of milliseconds left for Timer 4
4000018 6 Number of seconds since Aug. 02, 2013 09:00 PST
400001B 3 Number of processing ticks since processor start

2.3 Flag IO
This memory area contains the flag of the current instance of the running
firmware. Its default is readable and writable however writes are ignored. The
processor enforces a minimum readable setting.

2.4 Data Received
When the Data Received interrupt fires, this area has been filled in with network
related traffic. No more data can be received until the value stored in the Data
Received Size area is set to 0.

2.5. DATA RECEIVED SIZE 7

2.5 Data Received Size

This area ia a 3 byte value storing the size of data received. If this value is
non-zero then no more data can be received from the network.

2.6 Data Sent

This area is a buffer to write data to that is to be sent over the network. The
data is not sent until the Data Sent Size value is specified.

2.7 Data Sent Size

This area is a 3 byte value storing the size of data being sent. When a value is
written to this memory location the amount of data specified will be sent over
the network. Upon completion the value is set to 0 and the Data Sent interrupt
is fired to indicate success.

2.8 Shared Memory

This area of memory is an optional component that allows a processor to have
a shared memory region with other processors on the same bus. If this area
is detected on initialization then it will be marked Read/Write. Care must be
taken in communicating with other processors as data may be overwritten.

2.9 NVRAM Memory

This area of memory is an optional component that allows a processor to have
storage between a full power cycle. If this area is detected on initialization then
it will be marked Read/Write.

2.10 Interrupt Pointers

Each interrupt has 3 bytes to indicate the area of memory to jump to upon the
interrupt firing. If the value is 0 then the interrupt is not fired. It is possible
for an interrupt to fire while another interrupt is processing so disabling and
enabling interrupts is highly recommended to avoid conflicts.

8 CHAPTER 2. MEMORY LAYOUT AND IO

Table 2.4: Interrupt Pointer Addresses
Memory Start Interrupt

7FFFF00 Timer 1
7FFFF03 Timer 2
7FFFF06 Timer 3
7FFFF09 Timer 4
7FFFF0C Invalid Instruction
7FFFF0F Divide by 0
7FFFF12 Memory Exception
7FFFF15 Data Received
7FFFF18 Data Sent

2.11 Processor Identification
The last 128 bytes of memory are used for processor identification and infor-
mation of supported functionality. Writes to this area are ignored with the
exception of the Interrupt Stack Direction Flag.

Table 2.5: Processor Identification Attributes
Memory Start Bytes Details

7FFFF80 20 Processor name
7FFFFA0 3 Processor version
7FFFFA3 3 Processor functionality flags
7FFFFA6 4A For future use
7FFFFF0 1 Interrupt stack direction flag
7FFFFF1 F For future use

It is recommended to implementors that the processor version contains a
Major, Minor, and Revision value, one value per byte entry.

The functionality flags has the following information:

Table 2.6: Processor Functionality Flags
0 X X X

Interrupts are able to flip stack storage direction
FPU built into the processor
Processor supports 54-bit math

The low bit of the interrupt stack direction flag dictates the direction the
interrupt writes to the stack. A value of 0, the default, results in the interrupt
subtracting 99 bytes from the stack pointer then storing all registers in the 99
byte buffer starting with register 0. A value of 1 results in the interrupt storing

2.11. PROCESSOR IDENTIFICATION 9

and incrementing the stack pointer starting with register 0. The interrupt return
behaves in the opposite manner to restore the registers.

10 CHAPTER 2. MEMORY LAYOUT AND IO

Chapter 3

Interrupts and Exceptions

When any interrupt is fired, all 32 general purpose registers and low 4 bits of
the flags register are stored to the current stack before the processor begins
executing the specified interrupt routine. Upon returning from an interrupt, all
registers and low bits of the flag register are restored from the stack. The Disable
Interrupts, DI, and Enable Interrupts, EI, instructions are used to temporarily
disable an interrupt. Any interrupt with a value of 0 will not be called and
ignored.

3.1 Timer 1 to 4 Interrupts
Each timer has an accuracy of 1 millisecond and can be configured through the
Clock IO.

3.2 Invalid Instruction Exception
When an invalid instruction is detected this interrupt is fired. If this interrupt
is disabled with DI, (the ”Disable Interrupts” instruction,) or by having this
value be 0 then the processor will halt.

3.3 Divide by 0 Exception
Division with a divisor of 0 will trigger this interrupt. Additionally, all other
floating point exceptions will also trigger this interrupt.

3.4 Memory Exception
An attempt to read, write, or execute memory with invalid permission bits will
cause this interrupt to trigger.

11

12 CHAPTER 3. INTERRUPTS AND EXCEPTIONS

3.5 Data Received Interrupt
When data is received over the network this interrupt is fired.

3.6 Data Sent Interrupt
When data is fully sent over the network this interrupt is fired.

3.7 Exceptions
Upon an exception occurring, all registers are moved to the stack, R0 is set
to the PC location that failed, R1 is set to one of the following IDs indicating
the type of exception, and R2 is a value specific to the exception type. If an
exception occurs while the interrupt handling the exception is still active then
the processor will halt.

Table 3.1: Exception Identifiers
Exception ID Value Meaning

Memory Read 0 Address that failed to be read
Memory Write 1 Address that failed to be written

Memory Execute 2 Address that failed to execute
Invalid Instruction 3 0

Floating Point Error 4 0
Divide By 0 5 0

If the exception is disabled or the interrupt has no registered handler then
the exception is ignored and the result of the operation that failed is undefined.
The only case this is problematic is upon an instruction fault or execution in
non-executable memory. If no exception is registered it will cause the CPU to
halt due to not advancing the PC which would otherwise cause an infinite fault
loop. If multiple faults can occur on the same instruction then only one fault
will occur although no guarantee of which fault takes priority.

Chapter 4

Instruction Set

Unless specified otherwise, all math and immediate values are unsigned for inte-
ger arithmetic while all floating point math is signed. All rX values can reference
a general purpose register from 0 to 31. Any time the format rX:rX+Y is seen,
the instruction will work on registers rX through and including rX+Y based on
the value of Y. If present, the UF field controls if the flags get updated for the
instruction.

13

14 CHAPTER 4. INSTRUCTION SET

4.1 AD: Add
0 6 7 11 12 16 17 21 22 25 26
0000000 rA rB rC 0000 UF

Format: AD rA, rB, rC

Purpose: Add two 27-bit integer registers together

Description: The 27-bit value in rC is added to the 27-bit value in rB, the
result is placed in rA.

Operation: rA ← rB + rC

Flags affected: Z C O S

4.2 ADC: Add With Carry
0 6 7 11 12 16 17 21 22 25 26
0100000 rA rB rC 0000 UF

Format: ADC rA, rB, rC

Purpose: Add two 27-bit integer registers together including the carry bit

Description: The 27-bit value in rC is added to the 27-bit value in rB, the
carry bit from any previous operation is added to the result. The result
is placed in rA.

Operation: rA ← rB + rC + Carry_Bit

Flags affected: Z C O S

4.3. ADCI: ADD IMMEDIATE WITH CARRY 15

4.3 ADCI: Add Immediate With Carry
0 6 7 11 12 16 17 23 24 25 26
0100000 rA rB Immediate 01 UF

Format: ADCI rA, rB, IMM

Purpose: Add a 7-bit immediate value to a 27-bit integer register including
the carry bit

Description: The 7-bit immediate value is added to the 27-bit value in rB, the
carry bit from any previous operation is added to the result. The result
is placed in rA.

Operation: rA ← rB + IMM + Carry_Bit

Flags affected: Z C O S

4.4 ADCIM: Add Immediate Multi Reg With
Carry

0 6 7 11 12 16 17 23 24 25 26
0100010 rA rB Immediate 01 UF

Format: ADCIM rA, rB, IMM

Purpose: Add a 7-bit immediate value to a 54-bit integer register including
the carry bit

Description: The 7-bit immediate value is added to the 54-bit value in rB:rB+1,
the carry bit from any previous operation is added to the result. The result
is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 + IMM + Carry_Bit

Flags affected: Z C O S

16 CHAPTER 4. INSTRUCTION SET

4.5 ADCM: Add Multi Reg With Carry
0 6 7 11 12 16 17 21 22 25 26
0100010 rA rB rC 0000 UF

Format: ADCM rA, rB, rC

Purpose: Add two 54-bit integer registers together including the carry bit

Description: The 54-bit value in rC:rC+1 is added to the 54-bit value in
rB:rB+1, the carry bit from any previous operation is added to the result.
The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 + rC:rC+1 + Carry_Bit

Flags affected: Z C O S

4.6 ADF: Add Floating Point
0 6 7 11 12 16 17 21 22 25 26
0000001 rA rB rC 0000 UF

Format: ADF rA, rB, rC

Purpose: Add two 27-bit floating point registers together

Description: The 27-bit floating point value in rC is added to the 27-bit float-
ing point value in rB, the result is placed in rA.

Operation: rA ← rB + rC

Flags affected: Z C O S

4.7 ADFM: Add Floating Point Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0000011 rA rB rC 0000 UF

Format: ADFM rA, rB, rC

Purpose: Add two 54-bit floating point registers together

Description: The 54-bit floating point value in rC:rC+1 is added to the 54-bit
floating point value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 + rC:rC+1

Flags affected: Z C O S

4.8. ADI: ADD IMMEDIATE 17

4.8 ADI: Add Immediate
0 6 7 11 12 16 17 23 24 25 26
0000000 rA rB Immediate 01 UF

Format: ADI rA, rB, IMM

Purpose: Add a 7-bit immediate value to a 27-bit integer register

Description: The 7-bit immediate value is added to the 27-bit value in rB, the
result is placed in rA.

Operation: rA ← rB + IMM

Flags affected: Z C O S

4.9 ADIM: Add Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0000010 rA rB Immediate 01 UF

Format: ADIM rA, rB, IMM

Purpose: Add a 7-bit immediate value to a 54-bit integer register

Description: The 7-bit immediate value is added to the 54-bit value in rB:rB+1,
the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 + IMM

Flags affected: Z C O S

4.10 ADM: Add Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0000010 rA rB rC 0000 UF

Format: ADM rA, rB, rC

Purpose: Add two 54-bit integer registers together

Description: The 54-bit value in rC:rC+1 is added to the 54-bit value in
rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 + rC:rC+1

Flags affected: Z C O S

18 CHAPTER 4. INSTRUCTION SET

4.11 AN: And
0 6 7 11 12 16 17 21 22 25 26
0010100 rA rB rC 0000 UF

Format: AN rA, rB, rC

Purpose: Bit-wise AND two 27-bit integer registers together

Description: The 27-bit value in rC is bit-wise AND to the 27-bit value in rB,
the result is placed in rA.

Operation: rA ← rB & rC

Flags affected: Z C O S

4.12 ANI: And Immediate
0 6 7 11 12 16 17 23 24 25 26
0010100 rA rB Immediate 01 UF

Format: ANI rA, rB, IMM

Purpose: Bit-wise AND a 27-bit integer register and 7-bit immediate together

Description: The 7-bit immediate value is bit-wise AND to the 27-bit value
in rB, the result is placed in rA.

Operation: rA ← rB & IMM

Flags affected: Z C O S

4.13 ANM: And Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0010110 rA rB rC 0000 UF

Format: ANM rA, rB, rC

Purpose: Bit-wise AND two 54-bit integer registers together

Description: The 54-bit value in rC:rC+1 is bit-wise AND to the 54-bit value
in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 & rC:rC+1

Flags affected: Z C O S

4.14. B: BRANCH CONDITIONAL 19

4.14 B: Branch Conditional
0 5 6 9 10 26
110000 Condition Offset

Format: Bcc Offset

Purpose: Conditional branch to an offset

Description: If the specified condition is true then the sign extended offset is
added to the current program counter.
The condition table is as follows:

cc Value Description Flag State Checked
n 0000 Not Equal / Not Zero Z == 0
e 0001 Equal / Zero Z == 1
l 0010 Less Than C == 1 AND Z == 0
le 0011 Less Than or Equal C == 1 OR Z == 1
g 0100 Greater Than C == 0 AND Z == 0
ge 0101 Greater Than or Equal C == 0 OR Z == 1
no 0110 Not Overflow O == 0
o 0111 Overflow O == 1
ns 1000 Not Signed S == 0
s 1001 Signed S == 1
sl 1010 Signed Less Than S != O
sle 1011 Signed Less Than or Equal S != O OR Z == 1
sg 1100 Signed Greater Than S == O AND Z == 0
sge 1101 Signed Greater Than or Equal S == O

1111 Always

Operation:
if Flags == Condition then
PC += (signed)Offset

Flags affected: None

20 CHAPTER 4. INSTRUCTION SET

4.15 BF: Bit Flip
0 8 9 13 14 18 19 25 26
101001100 rA rB 1000000 UF

Format: BF rA, rB

Purpose: Bit flip a 27-bit register

Description: Invert all bits of the 27-bit rB register value and store the result
in rA.

Operation: rA ← ~rB

Flags affected: Z C O S

4.16 BFM: Bit Flip Multi Reg
0 8 9 13 14 18 19 25 26
101001110 rA rB 1000000 UF

Format: BFM rA, rB

Purpose: Bit flip a 54-bit register

Description: Invert all bits of the 54-bit rB:rB+1 register value and store the
result in rA:rA+1.

Operation: rA:rA+1 ← ~rB:rB+1

Flags affected: Z C O S

4.17. BR: BRANCH REGISTER CONDITIONAL 21

4.17 BR: Branch Register Conditional
0 5 6 9 10 14 15 17
110010 Condition rA 000

Format: BRcc rA

Purpose: Conditional branch to a register

Description: If the specified condition is true then the value in rA is placed
into the program counter.
The condition table is as follows:

cc Value Description Flag State Checked
n 0000 Not Equal / Not Zero Z == 0
e 0001 Equal / Zero Z == 1
l 0010 Less Than C == 1 AND Z == 0
le 0011 Less Than or Equal C == 1 OR Z == 1
g 0100 Greater Than C == 0 AND Z == 0
ge 0101 Greater Than or Equal C == 0 OR Z == 1
no 0110 Not Overflow O == 0
o 0111 Overflow O == 1
ns 1000 Not Signed S == 0
s 1001 Signed S == 1
sl 1010 Signed Less Than S != O
sle 1011 Signed Less Than or Equal S != O OR Z == 1
sg 1100 Signed Greater Than S == O AND Z == 0
sge 1101 Signed Greater Than or Equal S == O

1111 Always

Operation:
if Flags == Condition then
PC = rA

Flags affected: None

22 CHAPTER 4. INSTRUCTION SET

4.18 BRA: Branch Absolute
0 8 9 35
111000100 Location

Format: BRA Location

Purpose: Branch to a set absolute location

Description: The program counter is set to the specified 27-bit location.

Operation: PC = Location

Flags affected: None

4.19 BRR: Branch Relative
0 8 9 35
111000000 Offset

Format: BRR Offset

Purpose: Branch to a relative offset

Description: The 27-bit offset is added to the current program counter.

Operation: PC = PC + Offset

Flags affected: None

4.20. C: CALL CONDITIONAL 23

4.20 C: Call Conditional
0 5 6 9 10 26
110101 Condition Offset

Format: Ccc Offset

Purpose: Conditional call to an offset

Description: If the specified condition is true then the current program counter
+ 3 is saved into the RA register and the sign extended offset is added to
the current program counter.
The condition table is as follows:

cc Value Description Flag State Checked
n 0000 Not Equal / Not Zero Z == 0
e 0001 Equal / Zero Z == 1
l 0010 Less Than C == 1 AND Z == 0
le 0011 Less Than or Equal C == 1 OR Z == 1
g 0100 Greater Than C == 0 AND Z == 0
ge 0101 Greater Than or Equal C == 0 OR Z == 1
no 0110 Not Overflow O == 0
o 0111 Overflow O == 1
ns 1000 Not Signed S == 0
s 1001 Signed S == 1
sl 1010 Signed Less Than S != O
sle 1011 Signed Less Than or Equal S != O OR Z == 1
sg 1100 Signed Greater Than S == O AND Z == 0
sge 1101 Signed Greater Than or Equal S == O

1111 Always

Operation:
if Flags == Condition then
RA = PC + 3
PC += (signed)Offset

Flags affected: None

24 CHAPTER 4. INSTRUCTION SET

4.21 CAA: Call Absolute
0 8 9 35
111001100 Location

Format: CAA Location

Purpose: Call to a set absolute location

Description: The current program counter + 4 is stored into RA and the
program counter is set to the specified 27-bit location.

Operation:
RA = PC + 4
PC = Location

Flags affected: None

4.22 CAR: Call Relative
0 8 9 35
111001000 Offset

Format: CAR Offset

Purpose: Call to a relative offset

Description: The current program counter + 4 is stored into RA and the
27-bit offset is added to the current program counter.

Operation:
RA = PC + 4
PC = PC + Offset

Flags affected: None

4.23. CM: COMPARE 25

4.23 CM: Compare
0 7 8 12 13 17
10111000 rA rB

Format: CM rA, rB

Purpose: Compare two registers

Description: The 27-bit values in rB is subtracted from rA. The flags are set
appropriately.

Operation:
FLAGS = FLAGS & ~0xF
28-bit temp = rA - rB
if temp == 0 then
ZERO FLAG = 1

if temp & 0x4000000 then
SIGNED FLAG = 1

if (temp & 0x4000000) != (rA & 0x4000000) then
OVERFLOW FLAG = 1

if (temp & 0x8000000) then
CARRY FLAG = 1

Flags affected: Z S O C

26 CHAPTER 4. INSTRUCTION SET

4.24 CMF: Compare Floating Point
0 7 8 12 13 17
10111010 rA rB

Format: CMF rA, rB

Purpose: Compare two floating point registers

Description: The 27-bit floating point value in rB is subtracted from the float-
ing point rA. The flags are set appropriately.

Operation:
FLAGS = FLAGS & ~0xF
temp = rA - rB
if temp == 0.0 then
ZERO FLAG = 1

if temp < 0.0 then
SIGNED FLAG = 1

if (temp < 0.0) != (rA < 0.0) then
OVERFLOW FLAG = 1

Flags affected: Z S O

4.25 CMFM: Compare Floating Point Multi Reg
0 7 8 12 13 17
10111110 rA rB

Format: CMFM rA, rB

Purpose: Compare two floating point registers

Description: The 54-bit floating point value in rB is subtracted from the float-
ing point rA. The flags are set appropriately.

Operation:
FLAGS = FLAGS & ~0xF
temp = rA:rA+1 - rB:rB+1
if temp == 0 then
ZERO FLAG = 1

if temp < 0.0 then
SIGNED FLAG = 1

if (temp < 0.0) != (rA:rA+1 < 0.0) then
OVERFLOW FLAG = 1

Flags affected: Z S O

4.26. CMI: COMPARE IMMEDIATE 27

4.26 CMI: Compare Immediate
0 7 8 12 13 26
10111001 rA Immediate

Format: CMI rA, IMM

Purpose: Compare a register and immediate value

Description: The sign extended immediate value is subtracted from the 27-bit
rA. The flags are set appropriately.

Operation:
FLAGS = FLAGS & ~0xF
28-bit temp = rA - (signed)IMM
if temp == 0 then
ZERO FLAG = 1

if temp & 0x4000000 then
SIGNED FLAG = 1

if (temp & 0x4000000) != (rA & 0x4000000) then
OVERFLOW FLAG = 1

if (temp & 0x8000000) then
CARRY FLAG = 1

Flags affected: Z S O C

28 CHAPTER 4. INSTRUCTION SET

4.27 CMIM: Compare Immediate Multi Reg
0 7 8 12 13 26
10111101 rA Immediate

Format: CMIM rA, IMM

Purpose: Compare a register and immediate value

Description: The sign extended immediate value is subtracted from the 54-bit
rA:rA+1. The flags are set appropriately.

Operation:
FLAGS = FLAGS & ~0xF
55-bit temp = rA:rA+1 - (signed)IMM
if temp == 0 then
ZERO FLAG = 1

if temp & 0x20000000000000 then
SIGNED FLAG = 1

if ((temp & 0x20000000000000) !=
(rA:rA+1 & 0x20000000000000)) then

OVERFLOW FLAG = 1
if (temp & 0x40000000000000) then
CARRY FLAG = 1

Flags affected: Z S O C

4.28. CMM: COMPARE MULTI REG 29

4.28 CMM: Compare Multi Reg
0 7 8 12 13 17
10111100 rA rB

Format: CMM rA, rB

Purpose: Compare two registers

Description: The 54-bit values in rB:rB+1 is subtracted from rA:rA+1. The
flags are set appropriately.

Operation:
FLAGS = FLAGS & ~0xF
55-bit temp = rA:rA+1 - rB:rB+1
if temp == 0 then
ZERO FLAG = 1

if temp & 0x20000000000000 then
SIGNED FLAG = 1

if ((temp & 0x20000000000000) !=
(rA:rA+1 & 0x20000000000000)) then

OVERFLOW FLAG = 1
if (temp & 0x40000000000000) then
CARRY FLAG = 1

Flags affected: Z S O C

30 CHAPTER 4. INSTRUCTION SET

4.29 CR: Call Register Conditional
0 5 6 9 10 14 15 17
110111 Condition rA 000

Format: CRcc rA

Purpose: Conditional call to a register

Description: If the specified condition is true then the current program counter
+ 2 is saved into the RA register and the program counter is set to the
value in rA.
The condition table is as follows:

cc Value Description Flag State Checked
n 0000 Not Equal / Not Zero Z == 0
e 0001 Equal / Zero Z == 1
l 0010 Less Than C == 1 AND Z == 0
le 0011 Less Than or Equal C == 1 OR Z == 1
g 0100 Greater Than C == 0 AND Z == 0
ge 0101 Greater Than or Equal C == 0 OR Z == 1
no 0110 Not Overflow O == 0
o 0111 Overflow O == 1
ns 1000 Not Signed S == 0
s 1001 Signed S == 1
sl 1010 Signed Less Than S != O
sle 1011 Signed Less Than or Equal S != O OR Z == 1
sg 1100 Signed Greater Than S == O AND Z == 0
sge 1101 Signed Greater Than or Equal S == O

1111 Always

Operation:
if Flags == Condition then
RA = PC + 2
PC = rA

Flags affected: None

4.30. DBRK: DEBUG BREAK 31

4.30 DBRK: Debug Break
0 17
111111111111111111

Format: DBRK

Purpose: Debug break

Description: A special instruction for emulators to allow forcing a break in
the emulation. Normal execution will cause an illegal instruction fault.

Operation:

Flags affected: None

4.31 DI: Disable Interrupts
0 11 12 16 17
101000000101 rA 0

Format: DI rA

Purpose: Disable interrupts based on rA

Description: Disable interrupts based on the mask in rA.

Operation: FLAGS = (FLAGS & 0x7FFE00F) | ((~rA << 4) & 0x1FF0)

Flags affected: None

32 CHAPTER 4. INSTRUCTION SET

4.32 DMT: Direct Memory Transfer
0 6 7 11 12 16 17 21 22 26
0110100 rA rB rC 00000

Format: DMT rA, rB, rC

Purpose: Directly transfer memory between locations

Description: Directly transfer rC bytes of memory from location pointed to
by rB to memory location rA.

Operation:
P = 0
while(P < rC)
(byte)[rA + P] = (byte)[rB + P]
P = P + 1

Flags affected: None

4.33 DV: Divide
0 6 7 11 12 16 17 21 22 25 26
0001100 rA rB rC 0000 UF

Format: DV rA, rB, rC

Purpose: Divide two 27-bit integer registers

Description: The 27-bit value in rB is divided with the 27-bit value in rC, the
result is placed in rA.

Operation: rA ← rB / rC

Flags affected: Z C O S

4.34. DVF: DIVIDE FLOATING POINT 33

4.34 DVF: Divide Floating Point
0 6 7 11 12 16 17 21 22 25 26
0001101 rA rB rC 0000 UF

Format: DVF rA, rB, rC

Purpose: Divide two 27-bit floating point registers

Description: The 27-bit floating point value in rB is divided with the 27-bit
floating point value in rC, the result is placed in rA.

Operation: rA ← rB / rC

Flags affected: Z C O S

4.35 DVFM: Divide Floating Point Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001111 rA rB rC 0000 UF

Format: DVFM rA, rB, rC

Purpose: Divide two 54-bit floating point registers

Description: The 54-bit floating point value in rB:rB+1 is divided with the
54-bit floating point value in rC:rC+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 / rC:rC+1

Flags affected: Z C O S

4.36 DVI: Divide Immediate
0 6 7 11 12 16 17 23 24 25 26
0001100 rA rB Immediate 01 UF

Format: DVI rA, rB, IMM

Purpose: Divide a 27-bit integer register by a 7-bit immediate

Description: The 27-bit value in rB is divided with the 7-bit immediate value,
the result is placed in rA.

Operation: rA ← rB / IMM

Flags affected: Z C O S

34 CHAPTER 4. INSTRUCTION SET

4.37 DVIM: Divide Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0001110 rA rB Immediate 01 UF

Format: DVIM rA, rB, IMM

Purpose: Divide a 54-bit integer register by a 7-bit immediate

Description: The 54-bit value in rB:rB+1 is divided with the 7-bit immediate
value, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 / IMM

Flags affected: Z C O S

4.38 DVIS: Divide Immediate Signed
0 6 7 11 12 16 17 23 24 25 26
0001100 rA rB Immediate 11 UF

Format: DVIS rA, rB, IMM

Purpose: Divide a signed 27-bit integer register by a signed 7-bit immediate

Description: The signed 27-bit value in rB is divided with the signed 7-bit
immediate value, the result is placed in rA.

Operation: rA ← (signed)rB / (signed)IMM

Flags affected: Z C O S

4.39 DVISM: Divide Immediate Signed Multi
Reg

0 6 7 11 12 16 17 23 24 25 26
0001110 rA rB Immediate 11 UF

Format: DVISM rA, rB, IMM

Purpose: Divide a signed 54-bit integer register by a signed 7-bit immediate

Description: The signed 54-bit value in rB:rB+1 is divided with the signed
7-bit immediate value, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 / (signed)IMM

Flags affected: Z C O S

4.40. DVM: DIVIDE MULTI REG 35

4.40 DVM: Divide Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001110 rA rB rC 0000 UF

Format: DVM rA, rB, rC

Purpose: Divide two 54-bit integer registers

Description: The 54-bit value in rB:rB+1 is divided with the 54-bit value in
rC:rC+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 / rC:rC+1

Flags affected: Z C O S

4.41 DVS: Divide Signed
0 6 7 11 12 16 17 21 22 25 26
0001100 rA rB rC 0010 UF

Format: DVS rA, rB, rC

Purpose: Divide two signed 27-bit integer registers

Description: The signed 27-bit value in rB is divided with the signed 27-bit
value in rC, the result is placed in rA.

Operation: rA ← (signed)rB / (signed)rC

Flags affected: Z C O S

4.42 DVSM: Divide Signed Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001110 rA rB rC 0010 UF

Format: DVSM rA, rB, rC

Purpose: Divide two 54-bit integer registers

Description: The 54-bit value in rB:rB+1 is divided with the 54-bit value in
rC:rC+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 / (signed)rC:rC+1

Flags affected: Z C O S

36 CHAPTER 4. INSTRUCTION SET

4.43 EI: Enable Interrupts
0 11 12 16 17
101000000100 rA 0

Format: EI rA

Purpose: Enable interrupts base on rA

Description: Enable interrupts based on the mask in rA.

Operation: FLAGS = (FLAGS & 0x7FFE00F) | ((rA << 4) & 0x1FF0)

Flags affected: None

4.44 FTI: Float to Integer
0 8 9 13 14 18 19 26
101000101 rA rB 00000000

Format: FTI rA, rB

Purpose: Convert a 27-bit float to integer

Description: The 27-bit float in rB in converted to a 27-bit integer value and
stored in rA.

Operation: rA ← int(rB)

Flags affected: Z C O S

4.45 FTIM: Float to Integer Multi Reg
0 8 9 13 14 18 19 26
101000111 rA rB 00000000

Format: FTIM rA, rB

Purpose: Convert a 54-bit float to integer

Description: The 54-bit float in rB:rB+1 in converted to a 54-bit integer value
and stored in rA:rA+1.

Operation: rA:rA+1 ← int(rB:rB+1)

Flags affected: Z C O S

4.46. HT: HALT 37

4.46 HT: Halt
0 17
101000000011000000

Format: HT

Purpose: Halt the processor

Description: Disables all interrupts and stops the processor from responding
to any more instructions.

Operation:

Flags affected: None

4.47 IR: Interrupt Return
0 17
101000000001000000

Format: IR

Purpose: Return from an interrupt

Description: Return from an interrupt routine.

Operation:
if Stack_Direction_Flag then
SP -= 0x63

R0:R31 ← [SP:SP+0x60]
FLAGS ← [SP+0x60:SP+0x63]
if not Stack_Direction_Flag then
SP += 0x63

Flags affected: Z C O S

38 CHAPTER 4. INSTRUCTION SET

4.48 ITF: Integer to Float
0 8 9 13 14 18 19 26
101000100 rA rB 00000000

Format: ITF rA, rB

Purpose: Convert a 27-bit integer to float

Description: The 27-bit integer in rB in converted to a 27-bit float value and
stored in rA.

Operation: rA ← float(rB)

Flags affected: Z C O S

4.49 ITFM: Integer to Float Multi Reg
0 8 9 13 14 18 19 26
101000110 rA rB 00000000

Format: ITFM rA, rB

Purpose: Convert a 54-bit integer to float

Description: The 54-bit integer in rB:rB+1 in converted to a 54-bit float value
and stored in rA:rA+1.

Operation: rA:rA+1 ← float(rB:rB+1)

Flags affected: Z C O S

4.50. LDS: LOAD SINGLE 39

4.50 LDS: Load Single
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1010100 rA rB Register Count Adjust rB Memory Offset 000

Format: LDSm rA, [rB + Offset, RegCount]

Purpose: Load a single byte from memory

Description: The value in rB is added to Offset and a single byte per register
is loaded into the low 9 bits of rA to rA+RegCount. The top 18 bits are
set to zero for each affected register.
m refers to the Adjust RB value which can have the following designations
to indicate the mode:

m Mode Description

0 rB is not adjusted after load

I 1 rB has the number of bytes read added to the start value
after all data is read

D 2 rB has the number of bytes to read subtracted from the
start value after all data is read

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
TempPC = PC
if Mode is 2 then
Temp = Temp - CurCount

MemLocation = (Temp + Offset)
While CurCount is not 0
Registers[StartReg] = Memory[MemLocation]
MemLocation += 1
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + RegCount

if Mode is 2 then
rB = Temp

PC = TempPC

Flags affected: None

40 CHAPTER 4. INSTRUCTION SET

4.51 LDT: Load Tri
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1010110 rA rB Register Count Adjust rB Memory Offset 000

Format: LDTm rA, [rB + Offset, RegCount]

Purpose: Load three bytes from memory

Description: The value in rB is added to Offset and three bytes per register
are loaded into rA to rA+RegCount.
m refers to the Adjust RB value which can have the following designations
to indicate the mode:

m Mode Description

0 rB is not adjusted after load

I 1 rB has the number of bytes read added to the start value
after all data is read

D 2 rB has the number of bytes to read subtracted from the
start value after all data is read

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
TempPC = PC
if Mode is 2 then
Temp = Temp - (CurCount * 3)

MemLocation = (Temp + Offset)
While CurCount is not 0
Registers[StartReg] =
(Memory[MemLocation] << 9) |
(Memory[(MemLocation + 1)] << 18) |
Memory[(MemLocation + 2)]

MemLocation += 3
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + (RegCount * 3)

if Mode is 2 then
rB = Temp

PC = TempPC

Flags affected: None

4.52. LDW: LOAD WORD 41

4.52 LDW: Load Word
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1010101 rA rB Register Count Adjust rB Memory Offset 000

Format: LDWm rA, [rB + Offset, RegCount]

Purpose: Load two bytes from memory

Description: The value in rB is added to Offset and two bytes per register are
loaded into the low 18 bits of rA to rA+RegCount. The top 9 bits are set
to zero for each affected register.
m refers to the Adjust RB value which can have the following designations
to indicate the mode:

m Mode Description

0 rB is not adjusted after load

I 1 rB has the number of bytes read added to the start value
after all data is read

D 2 rB has the number of bytes to read subtracted from the
start value after all data is read

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
TempPC = PC
if Mode is 2 then
Temp = Temp - (CurCount * 2)

MemLocation = (Temp + Offset)
While CurCount is not 0
Registers[StartReg] =
(Memory[MemLocation] << 9) | Memory[(MemLocation + 1)]

MemLocation += 2
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + (RegCount * 2)

if Mode is 2 then
rB = Temp

PC = TempPC

Flags affected: None

42 CHAPTER 4. INSTRUCTION SET

4.53 MD: Modulus
0 6 7 11 12 16 17 21 22 25 26
0010000 rA rB rC 0000 UF

Format: MD rA, rB, rC

Purpose: Access the remainder of dividing two 27-bit integer registers

Description: The 27-bit value in rB is divided with the 27-bit value in rC, the
remainder of the division is placed in rA.

Operation: rA ← rB % rC

Flags affected: Z C O S

4.54 MDF: Modulus Floating Point
0 6 7 11 12 16 17 21 22 25 26
0010001 rA rB rC 0000 UF

Format: MDF rA, rB, rC

Purpose: Access the remainder of dividing two 27-bit floating point registers

Description: The 27-bit floating point value in rB is divided with the 27-bit
floating point value in rC, the remainder of the division is placed in rA.

Operation: rA ← rB % rC

Flags affected: Z C O S

4.55 MDFM: Modulus Floating Point Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0010011 rA rB rC 0000 UF

Format: MDFM rA, rB, rC

Purpose: Access the remainder of dividing two 54-bit floating point registers

Description: The 54-bit floating point value in rB:rB+1 is divided with the
54-bit floating point value in rC:rC+1, the remainder of the division is
placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 % rC:rC+1

Flags affected: Z C O S

4.56. MDI: MODULUS IMMEDIATE 43

4.56 MDI: Modulus Immediate
0 6 7 11 12 16 17 23 24 25 26
0010000 rA rB Immediate 01 UF

Format: MDI rA, rB, IMM

Purpose: Access the remainder of dividing a 27-bit integer register by a 7-bit
immediate

Description: The 27-bit value in rB is divided with a 7-bit immediate value,
the remainder of the division is placed in rA.

Operation: rA ← rB % IMM

Flags affected: Z C O S

4.57 MDIM: Modulus Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0010010 rA rB Immediate 01 UF

Format: MDIM rA, rB, IMM

Purpose: Access the remainder of dividing a 54-bit integer register by a 7-bit
immediate

Description: The 54-bit value in rB:rB+1 is divided with the 7-bit immediate
value, the remainder of the division is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 % IMM

Flags affected: Z C O S

44 CHAPTER 4. INSTRUCTION SET

4.58 MDIS: Modulus Immediate Signed
0 6 7 11 12 16 17 23 24 25 26
0010000 rA rB Immediate 11 UF

Format: MDIS rA, rB, IMM

Purpose: Access the remainder of dividing a signed 27-bit integer register by
a signed 7-bit immediate

Description: The signed 27-bit value in rB is divided with a signed 7-bit im-
mediate value, the remainder of the division is placed in rA.

Operation: rA ← (signed)rB % (signed)IMM

Flags affected: Z C O S

4.59 MDISM: Modulus Immediate Signed Multi
Reg

0 6 7 11 12 16 17 23 24 25 26
0010010 rA rB Immediate 11 UF

Format: MDISM rA, rB, IMM

Purpose: Access the remainder of dividing a signed 54-bit integer register by
a signed 7-bit immediate

Description: The signed 54-bit value in rB:rB+1 is divided with the signed
7-bit immediate value, the remainder of the division is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 % (signed)IMM

Flags affected: Z C O S

4.60. MDM: MODULUS MULTI REG 45

4.60 MDM: Modulus Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0010010 rA rB rC 0000 UF

Format: MDM rA, rB, rC

Purpose: Access the remainder of dividing two 54-bit integer registers

Description: The 54-bit value in rB:rB+1 is divided with the 54-bit value in
rC:rC+1, the remainder of the division is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 % rC:rC+1

Flags affected: Z C O S

4.61 MDS: Modulus Signed
0 6 7 11 12 16 17 21 22 25 26
0010000 rA rB rC 0010 UF

Format: MDS rA, rB, rC

Purpose: Access the remainder of dividing two signed 27-bit integer registers

Description: The signed 27-bit value in rB is divided with the signed 27-bit
value in rC, the remainder of the division is placed in rA.

Operation: rA ← (signed)rB % (signed)rC

Flags affected: Z C O S

4.62 MDSM: Modulus Signed Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0010010 rA rB rC 0010 UF

Format: MDSM rA, rB, rC

Purpose: Access the remainder of dividing two signed 54-bit integer registers

Description: The signed 54-bit value in rB:rB+1 is divided with the signed
54-bit value in rC:rC+1, the remainder of the division is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 % (signed)rC:rC+1

Flags affected: Z C O S

46 CHAPTER 4. INSTRUCTION SET

4.63 MH: Move High
0 4 5 9 10 26
10001 rA Immediate

Format: MH rA, IMM

Purpose: Move an immediate value to the high bits of a register

Description: The high 17 bits of a 27-bit value in rA is set to the specified
immediate value.

Operation: rA ← (IMM << 10) | (rA & 0x3FF)

Flags affected: Z C O S

4.64 ML: Move Low
0 4 5 9 10 26
10010 rA Immediate

Format: ML rA, IMM

Purpose: Move a 17-bit immediate value to the register

Description: A 27-bit rA is set to the specified 17-bit immediate value. The
high bits are zero’d out.

Operation: rA ← IMM

Flags affected: Z C O S

4.65 MS: Move Low Signed
0 4 5 9 10 26
10011 rA Immediate

Format: MS rA, IMM

Purpose: Move a signed 17-bit immediate value to the register

Description: A 27-bit rA is set to the specified signed 17-bit immediate value.
The high bits are set based on the signed bit of the immediate value
specified.

Operation: rA ← (signed)IMM

Flags affected: Z C O S

4.66. MU: MULTIPLY 47

4.66 MU: Multiply
0 6 7 11 12 16 17 21 22 25 26
0001000 rA rB rC 0000 UF

Format: MU rA, rB, rC

Purpose: Multiply two 27-bit integer registers together

Description: The 27-bit value in rC is multiplied with the 27-bit value in rB,
the result is placed in rA.

Operation: rA ← rB * rC

Flags affected: Z C O S

4.67 MUF: Multiply Floating Point
0 6 7 11 12 16 17 21 22 25 26
0001001 rA rB rC 0000 UF

Format: MUF rA, rB, rC

Purpose: Multiply two 27-bit floating point registers together

Description: The 27-bit floating point value in rC is multiplied with the 27-bit
floating point value in rB, the result is placed in rA.

Operation: rA ← rB * rC

Flags affected: Z C O S

4.68 MUFM: Multiply Floating Point Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001011 rA rB rC 0000 UF

Format: MUFM rA, rB, rC

Purpose: Multiply two 54-bit floating point registers together

Description: The 54-bit floating point value in rC:rC+1 is multiplied with the
54-bit floating point value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 * rC:rC+1

Flags affected: Z C O S

48 CHAPTER 4. INSTRUCTION SET

4.69 MUI: Multiply Immediate
0 6 7 11 12 16 17 23 24 25 26
0001000 rA rB Immediate 01 UF

Format: MUI rA, rB, IMM

Purpose: Multiply a 27-bit integer register by a 7-bit immediate

Description: The 7-bit immediate value is multiplied with the 27-bit value in
rB, the result is placed in rA.

Operation: rA ← rB * IMM

Flags affected: Z C O S

4.70 MUIM: Multiply Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0001010 rA rB Immediate 01 UF

Format: MUIM rA, rB, IMM

Purpose: Multiply a 54-bit integer register by a 7-bit immediate

Description: The 7-bit immediate value is multiplied with the 54-bit value in
rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 * IMM

Flags affected: Z C O S

4.71 MUIS: Multiply Immediate Signed
0 6 7 11 12 16 17 23 24 25 26
0001000 rA rB Immediate 11 UF

Format: MUIS rA, rB, IMM

Purpose: Multiply a signed 27-bit integer register by a signed 7-bit immediate

Description: The signed 7-bit immediate value is multiplied with the signed
27-bit value in rB, the result is placed in rA.

Operation: rA ← (signed)rB * (signed)IMM

Flags affected: Z C O S

4.72. MUISM: MULTIPLY IMMEDIATE SIGNED MULTI REG 49

4.72 MUISM: Multiply Immediate Signed Multi
Reg

0 6 7 11 12 16 17 23 24 25 26
0001010 rA rB Immediate 11 UF

Format: MUISM rA, rB, IMM

Purpose: Multiply a signed 54-bit integer register by a signed 7-bit immediate

Description: The signed 7-bit immediate value is multiplied with the signed
54-bit value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 * (signed)IMM

Flags affected: Z C O S

4.73 MUM: Multiply Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001010 rA rB rC 0000 UF

Format: MUM rA, rB, rC

Purpose: Multiply two 54-bit integer registers together

Description: The 54-bit value in rC:rC+1 is multiplied with the 54-bit value
in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 * rC:rC+1

Flags affected: Z C O S

4.74 MUS: Multiply Signed
0 6 7 11 12 16 17 21 22 25 26
0001000 rA rB rC 0010 UF

Format: MUS rA, rB, rC

Purpose: Multiply two signed 27-bit integer registers together

Description: The signed 27-bit value in rC is multiplied with the signed 27-bit
value in rB, the result is placed in rA.

Operation: rA ← (signed)rB * (signed)rC

Flags affected: Z C O S

50 CHAPTER 4. INSTRUCTION SET

4.75 MUSM: Multiply Signed Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0001010 rA rB rC 0010 UF

Format: MUSM rA, rB, rC

Purpose: Multiply two 54-bit integer registers together

Description: The signed 54-bit value in rC:rC+1 is multiplied with the signed
54-bit value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 * (signed)rC:rC+1

Flags affected: Z C O S

4.76 NG: Negate
0 8 9 13 14 18 19 25 26
101001100 rA rB 0000000 UF

Format: NG rA, rB

Purpose: Negate a 27-bit register

Description: Negate the 27-bit rB register value and store the result in rA.

Operation: rA ← -rB

Flags affected: Z C O S

4.77 NGF: Negate Floating Point
0 8 9 13 14 18 19 25 26
101001101 rA rB 0000000 UF

Format: NGF rA, rB

Purpose: Negate a 27-bit floating-point register

Description: Negate the 27-bit rB floating-point register value and store the
result in rA.

Operation: rA ← -rB

Flags affected: Z S

4.78. NGFM: NEGATE FLOATING POINT MULTI REG 51

4.78 NGFM: Negate Floating Point Multi Reg
0 8 9 13 14 18 19 25 26
101001111 rA rB 0000000 UF

Format: NGFM rA, rB

Purpose: Negate a 54-bit floating-point register

Description: Negate the 54-bit rB:rB+1 floating-point register value and store
the result in rA:rA+1.

Operation: rA:rA+1 ← -rB:rB+1

Flags affected: Z S

4.79 NGM: Negate Multi Reg
0 8 9 13 14 18 19 25 26
101001110 rA rB 0000000 UF

Format: NGM rA, rB

Purpose: Negate a 54-bit register

Description: Negate the 54-bit rB:rB+1 register value and store the result in
rA:rA+1.

Operation: rA:rA+1 ← -rB:rB+1

Flags affected: Z C O S

4.80 NT: Not
0 8 9 13 14 18 19 25 26
101001100 rA rB 0100000 UF

Format: NT rA, rB

Purpose: Bit test a 27-bit register

Description: Test all bits of the 27-bit rB register value. If any bits are set
then rA is set to 0. If all bits are off then rA is set to 1.

Operation: rA ← !rB

Flags affected: Z C O S

52 CHAPTER 4. INSTRUCTION SET

4.81 NTM: Not Multi Reg
0 8 9 13 14 18 19 25 26
101001110 rA rB 0100000 UF

Format: NTM rA, rB

Purpose: Bit test a 54-bit register

Description: Test all bits of the 54-bit rB:rB+1 register value. If any bits are
set then rA:rA+1 is set to 0. If all bits are off then rA:rA+1 is set to 1.

Operation: rA:rA+1 ← !rB:rB+1

Flags affected: Z C O S

4.82 OR: Or
0 6 7 11 12 16 17 21 22 25 26
0011000 rA rB rC 0000 UF

Format: OR rA, rB, rC

Purpose: Bit-wise OR two 27-bit integer registers together

Description: The 27-bit value in rC is bit-wise OR to the 27-bit value in rB,
the result is placed in rA.

Operation: rA ← rB | rC

Flags affected: Z C O S

4.83 ORI: Or Immediate
0 6 7 11 12 16 17 23 24 25 26
0011000 rA rB Immediate 01 UF

Format: ORI rA, rB, IMM

Purpose: Bit-wise OR a 27-bit integer register and 7-bit immediate together

Description: The 7-bit immediate value is bit-wise OR to the 27-bit value in
rB, the result is placed in rA.

Operation: rA ← rB | IMM

Flags affected: Z C O S

4.84. ORM: OR MULTI REG 53

4.84 ORM: Or Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0011010 rA rB rC 0000 UF

Format: ORM rA, rB, rC

Purpose: Bit-wise OR two 54-bit integer registers together

Description: The 54-bit value in rC:rC+1 is bit-wise OR to the 54-bit value
in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 | rC:rC+1

Flags affected: Z C O S

4.85 RE: Return
0 17
101000000000000000

Format: RE

Purpose: To return from a call

Description: To return from a call.

Operation: PC ← RETADDR

Flags affected: None

4.86 RF: Read Flags
0 11 12 16 17
101000001100 rA 0

Format: RF rA

Purpose: Read flags into the rA register

Description: Set rA to the value in the flag register.

Operation: rA = FLAGS

Flags affected: None

54 CHAPTER 4. INSTRUCTION SET

4.87 RL: Rotate Left
0 6 7 11 12 16 17 21 22 25 26
0110000 rA rB rC 0000 UF

Format: RL rA, rB, rC

Purpose: Rotate left a 27-bit integer

Description: The 27-bit value in rB is left rotated the number of bits specified
in rC. The result is placed in rA.

Operation: rA ← (rB << rC) | (rB >> (27-rC))

Flags affected: Z C O S

4.88 RLI: Rotate Left Immediate
0 6 7 11 12 16 17 23 24 25 26
1000000 rA rB Immediate 00 UF

Format: RLI rA, rB, IMM

Purpose: Rotate left a 27-bit integer by a 7-bit immediate value

Description: The 27-bit value in rB is left rotated by the 7-bit immediate
value. The result is placed in rA.

Operation: rA ← (rB << IMM) | (rB >> (27-IMM))

Flags affected: Z C O S

4.89 RLIM: Rotate Left Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
1000010 rA rB Immediate 00 UF

Format: RLIM rA, rB, IMM

Purpose: Rotate left a 54-bit integer by a 7-bit immediate value

Description: The 54-bit value in rB:rB+1 is left rotated by the 7-bit immediate
value. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (rB:rB+1 << IMM) | (rB:rB+1 >> (54-IMM))

Flags affected: Z C O S

4.90. RLM: ROTATE LEFT MULTI REG 55

4.90 RLM: Rotate Left Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0110010 rA rB rC 0000 UF

Format: RLM rA, rB, rC

Purpose: Rotate left a 54-bit integer

Description: The 54-bit value in rB:rB+1 is left rotated the number of bits
specified in rC. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (rB:rB+1 << rC) | (rB:rB+1 >> (54-rC))

Flags affected: Z C O S

56 CHAPTER 4. INSTRUCTION SET

4.91 RMP: Read Memory Protection
0 6 7 11 12 16 17 26
1010010 rA rB 0000000000

Format: RMP rA, rB

Purpose: Read the memory protections for a page of memory

Description: rA is set to the page protection flags of the pages of the specified
memory range starting at the memory location specified by rA and moving
forward rB pages. A set zero flag indicates success, upon failure rA holds
the error reason. Every 2 bits indicates the memory protection state of a
page. Only 13 page statuses can be returned at a time.
Errors:

Reason Description
0 Memory start is not page aligned
1 Too many pages specified

Flags:
Flag Description

0 No access
1 Read
2 Read/Write
3 Read/Execute

Operation:
rA ←

Memory_Page_Flags[rA]:Memory_Page_Flags[rA+(rB*1024)]

Flags affected: Z

4.92. RND: RANDOM 57

4.92 RND: Random
0 8 9 13 14 25 26
101001100 rA 000001100000 UF

Format: RND rA

Purpose: Generate a random value into rA

Description: A random value is placed into the 27-bit rA register.

Operation: rA ← <random value>

Flags affected: Z C O S

4.93 RNDM: Random Multi Reg
0 8 9 13 14 25 26
101001110 rA 000001100000 UF

Format: RNDM rA

Purpose: Generate a random value into rA:rA+1

Description: A random value is generated and placed into the 54-bit rA:rA+1
register.

Operation: rA:rA+1 ← <random value>

Flags affected: Z C O S

4.94 RR: Rotate Right
0 6 7 11 12 16 17 21 22 25 26
0110001 rA rB rC 0000 UF

Format: RR rA, rB, rC

Purpose: Rotate right a 27-bit integer

Description: The 27-bit value in rB is right rotated the number of bits specified
in rC. The result is placed in rA.

Operation: rA ← (rB >> rC) | (rB << (27-rC))

Flags affected: Z C O S

58 CHAPTER 4. INSTRUCTION SET

4.95 RRI: Rotate Right Immediate
0 6 7 11 12 16 17 23 24 25 26
1000001 rA rB Immediate 00 UF

Format: RRI rA, rB, IMM

Purpose: Rotate right a 27-bit integer by a 7-bit immediate value

Description: The 27-bit value in rB is right rotated by the 7-bit immediate
value. The result is placed in rA.

Operation: rA ← (rB >> IMM) | (rB << (27-IMM))

Flags affected: Z C O S

4.96 RRIM: Rotate Right Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
1000011 rA rB Immediate 00 UF

Format: RRIM rA, rB, rC

Purpose: Rotate right a 54-bit integer by an immediate value

Description: The 54-bit value in rB:rB+1 is right rotated by the 7-bit imme-
diate value. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (rB:rB+1 >> IMM) | (rB:rB+1 << (54-IMM))

Flags affected: Z C O S

4.97 RRM: Rotate Right Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0110011 rA rB rC 0000 UF

Format: RRM rA, rB, rC

Purpose: Rotate right a 54-bit integer

Description: The 54-bit value in rB:rB+1 is right rotated the number of bits
specified in rC. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (rB:rB+1 >> rC) | (rB:rB+1 << (54-rC))

Flags affected: Z C O S

4.98. SA: SHIFT ARITHEMETIC RIGHT 59

4.98 SA: Shift Arithemetic Right
0 6 7 11 12 16 17 21 22 25 26
0101101 rA rB rC 0000 UF

Format: SA rA, rB, rC

Purpose: Shift right arithmetic a 27-bit integer

Description: The 27-bit value in rB is right arithmetic shifted the number of
bits specified in rC. The result is placed in rA.

Operation: rA ← (signed)rB >> rC

Flags affected: Z C O S

4.99 SAI: Shift Arithemetic Right Immediate
0 6 7 11 12 16 17 23 24 25 26
0111101 rA rB Immediate 00 UF

Format: SAI rA, rB, IMM

Purpose: Shift right arithmetic a 27-bit integer by a 7-bit immediate value

Description: The 27-bit value in rB is right arithmetic shifted by the 7-bit
immediate value. The result is placed in rA.

Operation: rA ← (signed)rB >> IMM

Flags affected: Z C O S

4.100 SAIM: Shift Arithemetic Right Immedi-
ate Multi Reg

0 6 7 11 12 16 17 23 24 25 26
0111111 rA rB Immediate 00 UF

Format: SAIM rA, rB, IMM

Purpose: Shift right arithmetic a 54-bit integer by a 7-bit immediate value

Description: The 54-bit value in rB:rB+1 is right arithmetic shifted by the
7-bit immediate value. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 >> IMM

Flags affected: Z C O S

60 CHAPTER 4. INSTRUCTION SET

4.101 SAM: Shift Arithemetic Right Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0101111 rA rB rC 0000 UF

Format: SAM rA, rB, rC

Purpose: Shift right arithmetic a 54-bit integer

Description: The 54-bit value in rB:rB+1 is right arithmetic shifted the num-
ber of bits specified in rC. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← (signed)rB:rB+1 >> rC

Flags affected: Z C O S

4.102 SB: Subtract
0 6 7 11 12 16 17 21 22 25 26
0000100 rA rB rC 0000 UF

Format: SB rA, rB, rC

Purpose: Subtract two 27-bit integer registers from each other

Description: The 27-bit value in rC is subtracted from the 27-bit value in rB,
the result is placed in rA.

Operation: rA ← rB - rC

Flags affected: Z C O S

4.103. SBC: SUBTRACT WITH CARRY 61

4.103 SBC: Subtract With Carry
0 6 7 11 12 16 17 21 22 25 26
0100100 rA rB rC 0000 UF

Format: SBC rA, rB, rC

Purpose: Subtract two 27-bit integer registers from each other including the
carry bit

Description: The 27-bit value in rC is subtracted from the 27-bit value in rB,
the carry bit from any previous operation is subtracted from the result.
The result is placed in rA.

Operation: rA ← rB - rC - Carry_Bit

Flags affected: Z C O S

4.104 SBCI: Subtract Immediate With Carry
0 6 7 11 12 16 17 23 24 25 26
0100100 rA rB Immediate 01 UF

Format: SBCI rA, rB, IMM

Purpose: Subtract a 7-bit immediate from a 27-bit integer register including
the carry bit

Description: The 7-bit immediate value is subtracted from the 27-bit value
in rB, the carry bit from any previous operation is subtracted from the
result. The result is placed in rA.

Operation: rA ← rB - IMM - Carry_Bit

Flags affected: Z C O S

62 CHAPTER 4. INSTRUCTION SET

4.105 SBCIM: Subtract Immediate Multi Reg
With Carry

0 6 7 11 12 16 17 23 24 25 26
0100110 rA rB Immediate 01 UF

Format: SBCIM rA, rB, IMM

Purpose: Subtract a 7-bit immediate from a 54-bit integer register including
the carry bit

Description: The 7-bit immediate value is subtracted from the 54-bit value
in rB:rB+1, the carry bit from any previous operation is subtracted from
the result. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 - IMM - Carry_Bit

Flags affected: Z C O S

4.106 SBCM: Subtract Multi Reg With Carry
0 6 7 11 12 16 17 21 22 25 26
0100110 rA rB rC 0000 UF

Format: SBCM rA, rB, rC

Purpose: Subtracted two 54-bit integer registers from each other including the
carry bit

Description: The 54-bit value in rC:rC+1 is subtracted from the 54-bit value
in rB:rB+1, the carry bit from any previous operation is subtracted from
the result. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 - rC:rC+1 - Carry_Bit

Flags affected: Z C O S

4.107. SBF: SUBTRACT FLOATING POINT 63

4.107 SBF: Subtract Floating Point
0 6 7 11 12 16 17 21 22 25 26
0000101 rA rB rC 0000 UF

Format: SBF rA, rB, rC

Purpose: Subtract two 27-bit floating point registers from each other

Description: The 27-bit floating point value in rC is subtracted from to the
27-bit floating point value in rB, the result is placed in rA.

Operation: rA ← rB - rC

Flags affected: Z C O S

4.108 SBFM: Subtract Floating Point Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0000111 rA rB rC 0000 UF

Format: SBFM rA, rB, rC

Purpose: Subtract two 54-bit floating point registers from each other

Description: The 54-bit floating point value in rC:rC+1 is subtracted from the
54-bit floating point value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 - rC:rC+1

Flags affected: Z C O S

4.109 SBI: Subtract Immediate
0 6 7 11 12 16 17 23 24 25 26
0000100 rA rB Immediate 01 UF

Format: SBI rA, rB, IMM

Purpose: Subtract a 7-bit immediate value from a 27-bit integer register

Description: The 7-bit immediate value is subtracted from the 27-bit value in
rB, the result is placed in rA.

Operation: rA ← rB - IMM

Flags affected: Z C O S

64 CHAPTER 4. INSTRUCTION SET

4.110 SBIM: Subtract Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0000110 rA rB Immediate 01 UF

Format: SBIM rA, rB, IMM

Purpose: Subtract a 7-bit immediate value from a 54-bit integer register

Description: The 7-bit immediate value is subtracted from the 54-bit value in
rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 - IMM

Flags affected: Z C O S

4.111 SBM: Subtract Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0000110 rA rB rC 0000 UF

Format: SBM rA, rB, rC

Purpose: Subtracted two 54-bit integer registers from each other

Description: The 54-bit value in rC:rC+1 is subtracted from the 54-bit value
in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 - rC:rC+1

Flags affected: Z C O S

4.112 SES: Sign Extend Single
0 11 12 16 17 21 22 26
101000000111 rA rB 00000

Format: SES rA, rB

Purpose: Sign extend from a byte

Description: Sign extend a single byte from register rB into the 27-bit rA.

Operation: rA ← (signed)(rB << 18) >> 18

Flags affected: Z C O S

4.113. SEW: SIGN EXTEND WORD 65

4.113 SEW: Sign Extend Word
0 11 12 16 17 21 22 26
101000001000 rA rB 00000

Format: SEW rA, rB

Purpose: Sign extend from two bytes

Description: Sign extend a 18-bit value from register rB into the 27-bit rA.

Operation: rA ← (signed)(rB << 9) >> 9

Flags affected: Z C O S

4.114 SF: Set Flags
0 11 12 16 17
101000001011 rA 0

Format: SF rA

Purpose: Set flag register to rA

Description: Set the flag register to the value in rA.

Operation: FLAGS = rA & 0x7FFFFFF

Flags affected: Z C O S

4.115 SL: Shift Left
0 6 7 11 12 16 17 21 22 25 26
0101000 rA rB rC 0000 UF

Format: SL rA, rB, rC

Purpose: Shift left a 27-bit integer

Description: The 27-bit value in rB is left shifted the number of bits specified
in rC. The result is placed in rA.

Operation: rA ← rB << rC

Flags affected: Z C O S

66 CHAPTER 4. INSTRUCTION SET

4.116 SLI: Shift Left Immediate
0 6 7 11 12 16 17 23 24 25 26
0111000 rA rB Immediate 00 UF

Format: SLI rA, rB, IMM

Purpose: Shift left a 27-bit integer by a 7-bit immediate value

Description: The 27-bit value in rB is left shifted by the 7-bit immediate value.
The result is placed in rA.

Operation: rA ← rB << IMM

Flags affected: Z C O S

4.117 SLIM: Shift Left Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0111010 rA rB Immediate 00 UF

Format: SLIM rA, rB, IMM

Purpose: Shift left a 54-bit integer by a 7-bit immediate value

Description: The 54-bit value in rB is left shifted by the 7-bit immediate value.
The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 << IMM

Flags affected: Z C O S

4.118 SLM: Shift Left Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0101010 rA rB rC 0000 UF

Format: SLM rA, rB, rC

Purpose: Shift left a 54-bit integer

Description: The 54-bit value in rB:rB+1 is left shifted the number of bits
specified in rC. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 << rC

Flags affected: Z C O S

4.119. SMP: SET MEMORY PROTECTION 67

4.119 SMP: Set Memory Protection
0 6 7 11 12 16 17 18 19 20 26
1010010 rA rB 1 Memory Flags 0000000

Format: SMP rA, rB, FLAGS

Purpose: Set the memory protections for a range of pages of memory

Description: Memory starting at a page boundary specified by rA has its
page protection flags set to FLAGS for rB pages. A set zero flag indicates
success. Upon failure rA holds the error reason.
Errors:

Reason Description
0 Memory start is not page aligned
1 Too many pages specified

Flags:
Flag Description

0 No access
1 Read
2 Read/Write
3 Read/Execute

Operation:

Flags affected: Z

68 CHAPTER 4. INSTRUCTION SET

4.120 SR: Shift Right
0 6 7 11 12 16 17 21 22 25 26
0101001 rA rB rC 0000 UF

Format: SR rA, rB, rC

Purpose: Shift right a 27-bit integer

Description: The 27-bit value in rB is right shifted the number of bits specified
in rC. The result is placed in rA.

Operation: rA ← rB >> rC

Flags affected: Z C O S

4.121 SRI: Shift Right Immediate
0 6 7 11 12 16 17 23 24 25 26
0111001 rA rB Immediate 00 UF

Format: SRI rA, rB, IMM

Purpose: Shift right a 27-bit integer by a 7-bit immediate value

Description: The 27-bit value in rB is right shifted by the 7-bit immediate
value. The result is placed in rA.

Operation: rA ← rB >> IMM

Flags affected: Z C O S

4.122. SRIM: SHIFT RIGHT IMMEDIATE MULTI REG 69

4.122 SRIM: Shift Right Immediate Multi Reg
0 6 7 11 12 16 17 23 24 25 26
0111011 rA rB Immediate 00 UF

Format: SRIM rA, rB, IMM

Purpose: Shift right a 54-bit integer by a 7-bit immediate value

Description: The 54-bit value in rB:rB+1 is right shifted by the 7-bit imme-
diate value. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 >> IMM

Flags affected: Z C O S

4.123 SRM: Shift Right Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0101011 rA rB rC 0000 UF

Format: SRM rA, rB, rC

Purpose: Shift right a 54-bit integer

Description: The 54-bit value in rB:rB+1 is right shifted the number of bits
specified in rC. The result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 >> rC

Flags affected: Z C O S

70 CHAPTER 4. INSTRUCTION SET

4.124 STS: Store Single
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1011000 rA rB Register Count Adjust rB Memory Offset 000

Format: STSm rA, [rB + Offset, RegCount]

Purpose: Store a single byte into memory

Description: The value in rB is added to Offset and a single byte per register
is stored from the low 9 bits of each register from rA to rA+RegCount. m
refers to the Adjust RB value which can have the following designations
to indicate the mode:

m Mode Description

0 rB is not adjusted after store

I 1 rB has the number of bytes written added to the start
value after all data is written

D 2 rB has the number of bytes to write subtracted from the
start value after all data is written

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
if Mode is 2 then
Temp = Temp - CurCount

MemLocation = (Temp + Offset)
While CurCount is not 0
Memory[MemLocation] = Registers[StartReg] & 0x1ff
MemLocation += 1
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + RegCount

if Mode is 2 then
rB = Temp

Flags affected: None

4.125. STT: STORE TRI 71

4.125 STT: Store Tri
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1011010 rA rB Register Count Adjust rB Memory Offset 000

Format: STTm rA, [rB + Offset, RegCount]

Purpose: Store three bytes into memory

Description: The value in rB is added to Offset and a three bytes per register
are stored for each register from rA to rA+RegCount. m refers to the
Adjust RB value which can have the following designations to indicate
the mode:

m Mode Description

0 rB is not adjusted after store

I 1 rB has the number of bytes written added to the start
value after all data is written

D 2 rB has the number of bytes to write subtracted from the
start value after all data is written

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
if Mode is 2 then
Temp = Temp - (CurCount * 3)

MemLocation = (Temp + Offset)
While CurCount is not 0
Memory[MemLocation] =
(Registers[StartReg] >> 9) & 0x1ff

MemLocation += 1
Memory[MemLocation] =
(Registers[StartReg] >> 18) & 0x1ff

MemLocation += 1
Memory[MemLocation] =
Registers[StartReg] & 0x1ff

MemLocation += 1
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + (RegCount * 3)

if Mode is 2 then
rB = Temp

Flags affected: None

72 CHAPTER 4. INSTRUCTION SET

4.126 STW: Store Word
0 6 7 11 12 16 17 21 22 23 24 50 51 53
1011001 rA rB Register Count Adjust rB Memory Offset 000

Format: STWm rA, [rB + Offset, RegCount]

Purpose: Store two bytes into memory

Description: The value in rB is added to Offset and a two bytes per register
are stored from the low 18 bits of each register from rA to rA+RegCount.
m refers to the Adjust RB value which can have the following designations
to indicate the mode:

m Mode Description

0 rB is not adjusted after store

I 1 rB has the number of bytes written added to the start
value after all data is written

D 2 rB has the number of bytes to write subtracted from the
start value after all data is written

Operation:
StartReg = rA
RegCount = RegCount + 1
CurCount = RegCount
Temp = rB
if Mode is 2 then
Temp = Temp - (CurCount * 2)

MemLocation = (Temp + Offset)
While CurCount is not 0
Memory[MemLocation] = (Registers[StartReg] >> 9) & 0x1ff
MemLocation = (MemLocation + 1)
Memory[MemLocation] = Registers[StartReg] & 0x1ff
MemLocation = (MemLocation + 1)
StartReg = (StartReg + 1) % 32
CurCount = CurCount - 1

if Mode is 1 then
rB = rB + (RegCount * 2)

if Mode is 2 then
rB = Temp

Flags affected: None

4.127. WT: WAIT 73

4.127 WT: Wait
0 17
101000000010000000

Format: WT

Purpose: Wait for interrupt

Description: Pauses the processor until an interrupt fires.

Operation:

Flags affected: None

4.128 XR: Xor
0 6 7 11 12 16 17 21 22 25 26
0011100 rA rB rC 0000 UF

Format: XR rA, rB, rC

Purpose: Bit-wise eXclusive OR two 27-bit integer registers together

Description: The 27-bit value in rC is bit-wise eXclusive OR to the 27-bit
value in rB, the result is placed in rA.

Operation: rA ← rB ^ rC

Flags affected: Z C O S

4.129 XRI: Xor Immediate
0 6 7 11 12 16 17 23 24 25 26
0011100 rA rB Immediate 01 UF

Format: XRI rA, rB, IMM

Purpose: Bit-wise Exclusive OR a 27-bit integer register and 7-bit immediate
together

Description: The 7-bit immediate value is bit-wise Exclusive OR to the 27-bit
value in rB, the result is placed in rA.

Operation: rA ← rB ^ IMM

Flags affected: Z C O S

74 CHAPTER 4. INSTRUCTION SET

4.130 XRM: Xor Multi Reg
0 6 7 11 12 16 17 21 22 25 26
0011110 rA rB rC 0000 UF

Format: XRM rA, rB, rC

Purpose: Bit-wise eXclusive OR two 54-bit integer registers together

Description: The 54-bit value in rC:rC+1 is bit-wise eXclusive OR to the
54-bit value in rB:rB+1, the result is placed in rA:rA+1.

Operation: rA:rA+1 ← rB:rB+1 ^ rC:rC+1

Flags affected: Z C O S

4.131 ZES: Zero Extend Single
0 11 12 16 17 21 22 26
101000001001 rA rB 00000

Format: ZES rA, rB

Purpose: Zero extend from a byte

Description: Zero extend a single byte from register rB into the 27-bit rA.

Operation: rA ← rB & 0x00001FF

Flags affected: Z C O S

4.132 ZEW: Zero Extend Word
0 11 12 16 17 21 22 26
101000001010 rA rB 00000

Format: ZEW rA, rB

Purpose: Zero extend from two bytes

Description: Zero extend a 18-bit value from register rB into the 27-bit rA.

Operation: rA ← rB & 0x003FFFF

Flags affected: Z C O S

	Basic Architecture
	Registers
	Stack
	Relative Memory Reference

	Memory layout and IO
	Memory Protection
	Clock IO
	Flag IO
	Data Received
	Data Received Size
	Data Sent
	Data Sent Size
	Shared Memory
	NVRAM Memory
	Interrupt Pointers
	Processor Identification

	Interrupts and Exceptions
	Timer 1 to 4 Interrupts
	Invalid Instruction Exception
	Divide by 0 Exception
	Memory Exception
	Data Received Interrupt
	Data Sent Interrupt
	Exceptions

	Instruction Set
	AD: Add
	ADC: Add With Carry
	ADCI: Add Immediate With Carry
	ADCIM: Add Immediate Multi Reg With Carry
	ADCM: Add Multi Reg With Carry
	ADF: Add Floating Point
	ADFM: Add Floating Point Multi Reg
	ADI: Add Immediate
	ADIM: Add Immediate Multi Reg
	ADM: Add Multi Reg
	AN: And
	ANI: And Immediate
	ANM: And Multi Reg
	B: Branch Conditional
	BF: Bit Flip
	BFM: Bit Flip Multi Reg
	BR: Branch Register Conditional
	BRA: Branch Absolute
	BRR: Branch Relative
	C: Call Conditional
	CAA: Call Absolute
	CAR: Call Relative
	CM: Compare
	CMF: Compare Floating Point
	CMFM: Compare Floating Point Multi Reg
	CMI: Compare Immediate
	CMIM: Compare Immediate Multi Reg
	CMM: Compare Multi Reg
	CR: Call Register Conditional
	DBRK: Debug Break
	DI: Disable Interrupts
	DMT: Direct Memory Transfer
	DV: Divide
	DVF: Divide Floating Point
	DVFM: Divide Floating Point Multi Reg
	DVI: Divide Immediate
	DVIM: Divide Immediate Multi Reg
	DVIS: Divide Immediate Signed
	DVISM: Divide Immediate Signed Multi Reg
	DVM: Divide Multi Reg
	DVS: Divide Signed
	DVSM: Divide Signed Multi Reg
	EI: Enable Interrupts
	FTI: Float to Integer
	FTIM: Float to Integer Multi Reg
	HT: Halt
	IR: Interrupt Return
	ITF: Integer to Float
	ITFM: Integer to Float Multi Reg
	LDS: Load Single
	LDT: Load Tri
	LDW: Load Word
	MD: Modulus
	MDF: Modulus Floating Point
	MDFM: Modulus Floating Point Multi Reg
	MDI: Modulus Immediate
	MDIM: Modulus Immediate Multi Reg
	MDIS: Modulus Immediate Signed
	MDISM: Modulus Immediate Signed Multi Reg
	MDM: Modulus Multi Reg
	MDS: Modulus Signed
	MDSM: Modulus Signed Multi Reg
	MH: Move High
	ML: Move Low
	MS: Move Low Signed
	MU: Multiply
	MUF: Multiply Floating Point
	MUFM: Multiply Floating Point Multi Reg
	MUI: Multiply Immediate
	MUIM: Multiply Immediate Multi Reg
	MUIS: Multiply Immediate Signed
	MUISM: Multiply Immediate Signed Multi Reg
	MUM: Multiply Multi Reg
	MUS: Multiply Signed
	MUSM: Multiply Signed Multi Reg
	NG: Negate
	NGF: Negate Floating Point
	NGFM: Negate Floating Point Multi Reg
	NGM: Negate Multi Reg
	NT: Not
	NTM: Not Multi Reg
	OR: Or
	ORI: Or Immediate
	ORM: Or Multi Reg
	RE: Return
	RF: Read Flags
	RL: Rotate Left
	RLI: Rotate Left Immediate
	RLIM: Rotate Left Immediate Multi Reg
	RLM: Rotate Left Multi Reg
	RMP: Read Memory Protection
	RND: Random
	RNDM: Random Multi Reg
	RR: Rotate Right
	RRI: Rotate Right Immediate
	RRIM: Rotate Right Immediate Multi Reg
	RRM: Rotate Right Multi Reg
	SA: Shift Arithemetic Right
	SAI: Shift Arithemetic Right Immediate
	SAIM: Shift Arithemetic Right Immediate Multi Reg
	SAM: Shift Arithemetic Right Multi Reg
	SB: Subtract
	SBC: Subtract With Carry
	SBCI: Subtract Immediate With Carry
	SBCIM: Subtract Immediate Multi Reg With Carry
	SBCM: Subtract Multi Reg With Carry
	SBF: Subtract Floating Point
	SBFM: Subtract Floating Point Multi Reg
	SBI: Subtract Immediate
	SBIM: Subtract Immediate Multi Reg
	SBM: Subtract Multi Reg
	SES: Sign Extend Single
	SEW: Sign Extend Word
	SF: Set Flags
	SL: Shift Left
	SLI: Shift Left Immediate
	SLIM: Shift Left Immediate Multi Reg
	SLM: Shift Left Multi Reg
	SMP: Set Memory Protection
	SR: Shift Right
	SRI: Shift Right Immediate
	SRIM: Shift Right Immediate Multi Reg
	SRM: Shift Right Multi Reg
	STS: Store Single
	STT: Store Tri
	STW: Store Word
	WT: Wait
	XR: Xor
	XRI: Xor Immediate
	XRM: Xor Multi Reg
	ZES: Zero Extend Single
	ZEW: Zero Extend Word

